Emerging Technologies for

Controlling Marine Engine Emissions

Presented to:

Conference on Marine Vessels & Air Quality

Ву

John Hedrick

Phone: (210) 522-2336; e-mail: jhedrick@swri.edu

San Francisco, CA - February 2001

Introduction

- ◆ SwRI
- ◆ Emerging technologies
 - Near term
 - » Electronic engine management
 - » Fuel composition
 - » Exhaust aftertreatment
 - » EGR
 - Long term
 - » Water-fuel emulsion
 - » Alternative fuels
 - » HCCI
- Closing thoughts

Southwest Research Institute

Located in San Antonio, Texas

Founded 1947
~2,700 employees, 170 buildings on 1,200 acres
1.7 million sq ft of office & lab space (185,000 m²)
FY 1999 revenue over \$308 million

Southwest Research Institute

- Best described by what SwRI is not.
 - Not a Government lab
 - Not associated with any University or Industry
 - Not publicly held
- ◆ SwRI is not-for-profit
- ◆ Focused contract R&D
- Unique patent policy
 - 37 Patents in 1998
- 50 / 50 mix (commercial / government)

 SwRI is divided into 11 technical divisions

Division 03

Department of Engine Research

- ◆ Engine Testing
 - Emissions
 - Performance
 - Fuel economy
- ◆ Engine Development
 - Alternative fuels
 - Performance
- ◆ Engine Design
 - Design
 - » Component & clean sheet
 - Analysis

- ◆Strong focus on quality
 - → ISO-9001 certified
 - → Ford Q1 status

Near Term Solutions

- ◆ Electronic engine management
 - Injection equipment
- ◆ Diesel & heavy fuels
- Exhaust aftertreatment
- ◆ Exhaust Gas Recirculation (EGR)

Electronic Management

- ◆ Injection Equipment
 - Electronic controlled jerk pumps (EFI)
 - Electronic controlled unit injectors (EUI)
 - Common rail (CR)

Near Term Solution

Electronic Management (cont'd)

- ◆ Injection Equipment (cont'd)
 - Injection rate shaping for
 - » Improved performance
 - » Improved fuel economy
 - » Emissions reduction
 - » Improved catalyst operation
 - Pilot Injection
 - Post Injection
 - Common rail provides full authority injection timing & duration (not cam limited)

Diesel and Heavy Fuels

- ◆ Low sulfur fuels
 - PM reduction
 - SO₂ reduction
 - Near 0% sulfur required for NO_v catalyst
- ◆ High cetane fuels
 ◆ Fischer-Tropsch fuel
 - Produced from NG
 - High cetane
 - Very low sulfur

Near Term Solution

Diesel and Heavy Fuels (cont'd)

Some cetane enhancing additives can increase NO_x emissions

EGR

- ◆ Used in
 - Automotive applications
 - On-highway diesel engines
- Reduces NO_x emissions in diesel engines
 - Cool EGR desired for max. NO_x reduction
 - Additional cooling required
 - Additional plumbing and heat exchangers

Near Term Solution

EGR (cont'd)

- Can have adverse effect on PM emissions
 - Oil contamination with soot
 - Wear issues
 - Deposits

Exhaust Aftertreatment

- ◆ PM Traps
- ◆ Oxidation Cat
- ♦ SCR

Technology	PM Reduction	NOx Reduction	HC Reduction	CO Reduction
Diesel particulate filter	>90%	n.a.	>90%	>90%
Diesel oxidation catalyst	>30%	n.a.	>90%	>90%
Selective catalytic reduction	>30%	>90%	>70%	>50%

- ♦ Watch for:
 - Lean NO_x catalyst
 - Lean NO_x trap
 - Non-thermal plasma reactor

Long Term Solutions

- ◆ Water-fuel emulsion
- ◆ Electronic Valve Actuation (EVA)
- ◆ Alternative fuels
 - Lean burn
 - Stoic combustion
- Synthesis Gas
- ◆ Homogeneous Charge Compression Ignition (HCCI)

Water Fuel Emulsion

- ◆ Water-fuel emulsion can reduce
 - NO_x emissions
 - PM emissions
- Increase fuel economy
- → All of these benefits can be accomplished simultaneously - If done right!
- ◆ The water
 - Reduces soot formation (PM emissions)
 - Cools the combustion flame (NO_x formation)
 - Phase change & chemistry = improved efficiency

Long Term Solutions

Water Fuel Emulsion (cont'd)

- Injector design modifications often required
- For steady state operation
 - Homogeneous mixture of fuel & H₂O
 - Surfactant to keep the water in suspension
- ◆ For transient operation
 - Cycle-by-cycle (or real time) control of water injection for best results
- Water supply required (filtered and deionized)

6 Liter engine, 2000 rev/min, 80% Load

Electronic Valve Actuation

- ◆ Electronic Valve Actuation
 - Can be used for Miller Cycle
 - » Minimize emissions
 - » Maximum performance
 - Variable CR
 - » Better cold starting
 - » Reduced white smoke
 - Use with aftertreatment control exhaust temperature
 - · Catalyst light off
 - ◆ Control catalyst regeneration
 - » Exhaust gas preparation
 - · Catalyst efficiency

Long Term Solutions

Alternative Fuels

- ◆ Fuels of key interest
 - Natural Gas (NG)
 - Propane
 - Hydrogen
- NG (as CNG or LNG) most practical and cost effective
- Some work already done on large engines used in LNG transports

Lean Burn Engines

- Heavy use in stationary & HD on-highway engines
- ◆ Lean Burn = low emissions & good fuel economy
- ◆ Can be used on any of the Alt fuels listed
- Note box on graph
 - Low NO_x
 - Low CO
 - Low HC

Long Term Solutions

Stoic Fueled Engines

- ◆ Chemically correct A/F ratio
- Works with NG & LPG fuels
- Not feasible for hydrogen
- ◆ Fuel economy less than lean burn
- High combustion and exhaust temperatures
- Allows use of three way catalyst
 - Very low emissions
- ◆ Exhaust Gas Recirculation (EGR) used for dilution

Lean Fuel-Air Equivalence Ratio Rich

Stoic Fueled Engines (cont'd)

Catalyst Conversion Efficiency

 Accurate control of A/F ratio required to maintain catalyst efficiency

Long Term Solutions

Synthesis Gas

- ◆ Also known as "Syngas"
- Hydrogen source for combustion enhancement
- → H₂ produced by rich combustion of natural gas and air over catalyst (low soot)

Synthesis Gas (cont'd)

Advantages of synthesis gas when used with:

Lean Burn Engine

- H₂ can extend lean limit
 - Much cheaper than SCR on lean-burn

Stoichiometric Engine

- H₂ extends EGR tolerance
 - EGR tolerance increased by up to 44%
 - High EGR dilution rates provide:
 - » Reduced exhaust temp to leanburn levels
 - » Increased power density
 - » Reduced engine-out NO_x by 77%
 - Use TWC to reach NO_x <15 ppm

Long Term Solutions

Synthesis Gas (cont'd)

◆Syngas for Stoic Engine w/EGR

Synthesis Gas (cont'd)

Long Term Solutions

HCCI

- ♦ What is HCCI?
 - Homogeneous mixture of fuel (or fuels) & air
 - Compression ignition

- Spontaneous reaction throughout cylinder
- ◆ Low temperature reaction creates low NO_x

HCCI (cont'd)

- Used to produce ultra low NO_x emissions
 - 95% reduction from diesel levels
- ◆ High efficiency
 - Near diesel levels while producing low emissions
- ◆ Issues
 - Control start of combustion
 - » Has been demonstrated by using 2 fuels
 - Full load
 - » Laboratory engine at 35% of peak torque

Closing Thoughts

- ◆ Keep informed!
 - Conferences
 - » Upcoming example
 - ◆ ASME, ICE Division
 - 2001 Spring Technical Conference (April 29 May 2, 2001)
 - Host U.S. Navy Surface Warfare Center, Philadelphia, PA
 - Web sights
 - » www.asme.org/divisions/ice
 - » www.sae.org
 - » www.MECA.org
 - » www.SwRI.org
 - Publications
 - » Diesel & Gas Turbine Worldwide
 - » Workboat

Southwest Research Institute

San Antonio, Texas with offices in Detroit, Houston and Washington D.C.

